
Possibility of arbitrary code execution
by Step-Oriented Programming

Hiroaki Sakai

About Me
FUJITSU LIMITED NETWORK SERVICES BUSINESS UNIT
Fujitsu Security Meister (High Master Area)
Security & Programming Camp (Current Security Camp) Instructor
SECCON Executive Committee
SecHack365 Executive Council Committee
Program Committee for Workshop on Critical Software System
Personal Event Exhibition and many seminar talk
One of assembly language programming Tanka Rokkasen (six major
poets)
Binary karuta creator
Free software creator
Professional Engineer (Information Engineering)

http://kozos.jp/

About Me
I made my own embedded OS "KOZOS" operating on an inexpensive
microcomputer board as a hobby programming, implemented boot loader,
simple multitasking kernel, device driver, simple TCP/IP stack, simple web
server, debugger support and simulator support, and operated a web server
with software written completely from scratch.

I also released them as open source software, exhibited and performed
presentations at various events such as Open Source Conference.

About Me

I am an embedded software engineer.

Today's topic is about what happens when
an embedded software engineer tries
security.

Abstract
Possibility of arbitrary code execution by Step-Oriented Programming

An embedded system has a stub to connect with a host PC and
debug a program on the system remotely. A stub is an independent
control program that controls a main program to enable debugging
by a debugger. A stub is simplified by only processing the simple
controls such as reading or writing of the register or of a memory,
and a debugger processes a complicated analysis on the host PC.

Abstract
Possibility of arbitrary code execution by Step-Oriented Programming

Communication with a debugger on the host PC and a stub on the embedded
system is performed by a protocol called Remote Serial Protocol (RSP) over a
serial communication or TCP/IP communication. If this communication is
taken away, it becomes possible to operate a stub arbitrarily. We considered
what kind of attack possibility there was in that case, and identified that
execution of arbitrary code constructed from pieces of machine code,
combined with (SOP: Step-Oriented Programming) is possible by repeating
step execution while changing the value of the program counter.

Abstract
Possibility of arbitrary code execution by Step-Oriented Programming

Therefore it is possible to construct an arbitrary code and execute it from
existing machine code, even if execution of the injected machine code is
impossible because execution on data area is prevented by DEP or only
machine code on the flash ROM are allowed execution.

I will explain about an attack principle by SOP and the results from
constructed attack code and actual inspection.

Agenda for Today

What are embedded devices

How embedded devices handle remote debugging

Communication protocols for remote debugging

Possibility of attacks by Step-Oriented Programming (SOP)

Experiments at SECCON CTF

Important!
The purpose of this research is to be able to
consider some essential defenses by understanding
the possibilities of attacks when the connection was
stolen, not to help any illegal attacks.

And, the purpose of this research is to enlighten
security of embedded system by understanding
danger.

It's illegal to attack or inspect others' server or
equipment without permission. Don't do that!

Conclusion

When the debugging port is open, anything can be
done (of course)

You cannot say that it is safe just because it is not
possible to inject machine code
(Using SOP, it is possible to execute arbitrary code)

Let's make sure that the debugging port is closed!
(If possible, try deleting stub code and removing the
circuit itself)

What are embedded
devices

What are embedded devices

Rice cookers, air‐conditioners, cars, bun
steamers in convenience stores, ...

Devices that are controlled at the
software level by microcomputer

What are embedded devices
PCs and servers are "general-purpose devices"

Users use them for generic purposes by installing applications (main
factor is the applications)
Resources can be expanded (users can replace CPUs or add more
memories)
Better to have lots of resources (too big is better than too small)

Embedded devices are "dedicated devices"

Used for a specific purpose with specially built software (main factor
is the devices themselves)
Resources are limited (Users don't replace CPUs or add memories)
Just the right amount of resources are required (right resources for
the right tasks)

What are embedded devices (from a security stand point)
Controlled at the software level by microcomputers for embedded
systems

They are computer systems after all, like PCs and servers
It is possible to get attacked same way as those

Operating everywhere (such as appliances, communication devices,
smart meters...), where we don't even recognize

Compared to PCs and servers...

Embedded devices handle very few information resources
The number of embedded devices are huge
Those are increased in recent years, but it isn't managed so much

Developing programs for embedded devices
Big differences between development environment and running
environment

Hosts and targets are different
Hosts may be modern PCs or servers
Targets may not be x86 or may be 8-bit microcontrollers

Cross-Compilation
Complied at the host, executed at the target

Remote debugging
Start a debugger at the host, connect to a debugging port
of the target via ways such as serial cables and then debug

Debugging ports for embedded devices
Many embedded devices have a port for debugging

That may be a serial port, may be a TCP/IP connection

Sometimes products have it secretly, or a circuit could be remaining
which can be used by soldering a connector onto it...

It is possible for embedded devices kept outdoors to be cracked
during nights

Anything can be done if the debugging port is compromised (of course)

Just like freely controlling programs operating in the debugger
Rewrite memories, modify the program counter, etc
It is possible to do anything such as injecting and executing shell code

So anything can be done
when a debugging port is compromised

But what kind of attacks will actually happen...?

Consider, in microcomputers there are architectures
where it's essentially not possible to do things like
injecting and executing code

Today's topic is to think about that possibility

I will not talk about how the debugging port is stolen
The theme is to talk about what will be possible when
the debugging port is stolen

How embedded devices handle
remote debugging

Normal debugging

Debugging using gdbserver

Debugging of embedded devices

Stub structure

Stub implementation

 p = recvbuf;
 switch (*(p++)) {
 ...
 case 'g':
 read_memory(registers, sendbuf, REGISTERS_SIZE);
 break;

 case 'G':
 write_memory(p, registers, REGISTERS_SIZE);
 stub_strcpy(sendbuf, "OK");
 break;
 ...

Stub implementation
case 'm':
 a2val(&p, &addr);
 if (*(p++) != ',') {
 stub_strcpy(sendbuf, "E01");
 break;
 }
 a2val(&p, &size);
 read_memory((void *)addr,
 sendbuf, size);
 break;
...

case 'M':
 a2val(&p, &addr);
 if (*(p++) != ',') {
 stub_strcpy(sendbuf, "E01");
 break;
 }
 a2val(&p, &size);
 if (*(p++) != ':') {
 stub_strcpy(sendbuf, "E02");
 break;
 }
 write_memory(p, (void *)addr, size);
 stub_strcpy(sendbuf, "OK");
 break;
...

Communication protocols for remote
debugging

RSP (Remote Serial Protocol)
This is a protocol to send and receive debugging
information between a debugger on the host and stubs
on the target

Only simple operation commands are defined

Such as reading/writing of registers or of the
memory

The debugger on the host will handle complicated
operations by combining commands

What you can do with RSP

Get register values
Set register values
Read from the memory
Write into the memory
etc...

In short, you can do anything

You can inject executable code in the memory and
execute them by modifying the program counter

Protocol for RSP
Format

 $<command>{<parameter>}#<checksum>

Commands and parameters

For example, "s" for the step execution, "c" to continue the
operation
Some commands have parameters after them (such as
reading/writing of the memory)

Checksum

The sum of the command + parameter part (1 byte)

Protocol for RSP
Response

Return "+" as Ack when properly received
(in a case like checksum error "-" will be returned as Nak
and asks for a resend)

Return "OK" when the command is executed

Return "Enn" when an error occurs (nn is a number that
describes the error type, Ex: E01)

Return an empty command ("$#00") when the command is
not supported

Example of RSP commands

Operations Command
columns

Step execution $s#73
Get register values $g#67
Read from the memory$m2400,10#c0

Primitive commands
Commands Meanings

s Step execution (step)
c Continue the operation (continue)
g Get register values
G Set register values
m<address>,<size>Read from the memory
M<address>,<size>Write into the memory
D Detach

There are many other commands defined, but most debugging
operations with gdb can be done using just the above commands

There are higher-level commands as well, but when they are not
supported by the stub, gdb will automatically adjust to use other simple
commands instead of using them

Demo
(Controlling the target using

RSP)

Notes

gdb combines various RSP commands
to materialize operations such as "continue"

"Continue" in gdb does not only send c
command to the stub

In other words, gdb commands do not
simply correspond to RSP commands

Example of the "continue" operation
It is not just sending "c command" when continuing an operation from
a breakpoint on gdb

To "continue" as expected, it needs to do the following operations
(in the case of software breakpoints)

With s command, do a step execution for just 1 instruction
With m command, read and save the instruction which the
breakpoint is placed on
With M command, set the trap instruction to where we used break (if
you didn't do this, you cannot properly break the next time)
Use c command to "continue" operation

The "continue" works thanks to gdb that automatically executes these
commands

Commands executed when setting a breakpoint with ARM

(gdb) set debug remote 1
(gdb) target remote localhost:10000
...
(gdb) break main
Sending packet: $m20c8,4#ca...Ack
Packet received: 04e02de5
Breakpoint 1 at 0x20c8: file arm-elf.c, line 39.
(gdb) continue
Continuing.
Sending packet: $Z0,20c8,4#13...Ack
Packet received:
Packet Z0 (software-breakpoint) is NOT supported
...

Test if Z0 command is available
(software breakpoint setting that can pass parameters)

-> Not implemented

Commands executed when setting a breakpoint with ARM

...
Sending packet: $m20c8,4#ca...Ack
Packet received: 04e02de5
Sending packet: $X20c8,0:#eb...Ack
Packet received:
binary downloading NOT supported by target
Sending packet: $M20c8,4:fedeffe7#e0...Ack
Packet received: OK
Sending packet: $vCont?#49...Ack
Packet received:
Packet vCont (verbose-resume) is NOT supported
Sending packet: $Hc0#db...Ack
Packet received:
Sending packet: $c#63...Ack

With m command, read machine code set at the
breakpoint -> Save it

Test if X command is available
(for fast reading/writing of the memory
with binary communication)

-> Not implemented

With M command, set the trap instruction at the
breakpoint Test if vCont command is available

(Multi-thread extension for the
"continue" operation)

-> Not implemented
Test if Hc0 command is available
(Specify the "continue" operation for
each thread) -> Not implemented

Use c command to do the "continue" operation
Commands are progressively
converted to simple ones

Commands executed when "continue" is executed with ARM (When a break occurs)

Packet received: T05
Sending packet: $g#67...Ack
Packet received: 00
001028000008200000c82000
00
00
00d3000000
Sending packet: $m20c8,4#ca...Ack
Packet received: fedeffe7
Sending packet: $qL1160000000000000000#55...Ack
Packet received:
Sending packet: $M20c8,4:04e02de5#0d...Ack
Packet received: OK

Breakpoint 1, main () at arm-elf.c:39
39 arm-elf.c: No such file or directory.
(gdb)

With g command, get a list of registers (It includes the
program counter, so you can find where the breakpoint is)

With m command, check the machine
code at where the breakpoint is placed

With M command, recover the machine code at the
breakpoint to their originals

Commands executed when "continue" is executed with ARM (When "continue" is executed)

(gdb) continue
Continuing.
Sending packet: $Hc0#db...Ack
Packet received:
Sending packet: $s#73...Ack
Packet received: T05
Sending packet: $g#67...Ack
Packet received: 00
000c28000008200000cc2000
00
00
00d3000000
Sending packet: $m20cc,4#f5...Ack
Packet received: 0100a0e3
Sending packet: $m20c8,4#ca...Ack
Packet received: 04e02de5
Sending packet: $M20c8,4:fedeffe7#e0...Ack
Packet received: OK
Sending packet: $Hc0#db...Ack
Packet received:
Sending packet: $c#63...Ack

With s command, do a step execution for one
instruction (Stop at the instruction next to the
breakpoint)

With g command, check the stopping position

With m command, get and save the instruction
at which the breakpoint is placed (to recover
the instruction when the next break occurs)

With M command, set the trap instruction at the
breakpoint (The trap instruction is 0xe7ffdefe)

Use c command for the "continue" operation

Materializing the step execution
The step execution with "s command" is processed by the stub as
shown below

How to use step execution exception

Step execution exception ... Exception that occurs after each
instruction is executed
In many cases, the CPU register is changed to enable the
exception for the step execution and continue the operation
when s command is received
It is possible to cause a break for each instruction without
rewriting instructions
In a sample stub for GDB, x86, IA-64, and 68000 are
implemented this way.

Materializing the step execution
The step execution with "s command" is processed by the stub as
shown below

How to mount a trap instruction at the stub side

When s command is received, stubs save the next instruction of
the program counter and rewrite it to the trap instruction to
cause a break
For conditional branch instruction, trap instruction is necessary
for both next to the branch instruction and where it branches to
When a break occurs, it is necessary to recover the saved
instruction
In a sample stub for GDB, M32R and SH are implemented this
way

Compression protocols
This can compress a sequence of 4 or more of same characters

Effective for operations such as setting registers using G command
(By setting 0 for registers that don't require configuration, you can
compress those values)

Format

 <w>*<c>

<w> a sequence of same characters

<c>Using an expression n = c - 29, create additional n number of
<w> in succession (when c = '<', n = '<' - 29 = 60 - 29 = 31)

Compression protocols
Example for ARM

R0 R1 R2-R13 LR PC
#+------++------++-------++------++------+
G00240000000000000*<0*<0*<0000000024200000

a sequence of 32 zeros * 3 times -> 96 zeros
-> Cover the settings for 12 registers

When decompressed it looks like below

G002400...
...0000000024200000

Possibility of attacks by Step-
Oriented Programming (SOP)

Is it really possible to do anything
if the debugging port is stolen?

If the debugging port is stolen, an attacker
can inject machine code using M
command, modify the program counter
using G command to point to the machine
code, and then execute shell code easily
(of course)

Is it really possible to do anything
if the debugging port is stolen?

However, sometimes it is not possible to inject or execute machine
code

Possibilities of not being able to rewrite machine code
Guarded by memory protection
Stubs are checking addresses when writing into the memory
using M command
Executable code are on the flash memory

Possibilities of not being able to execute on data area
DEP is enabled
Hard to inject machine code due to small RAM
The microcomputer has the Harvard architecture that essentially
does not allow machine code on RAM to be executed

Is it really possible to do anything
if the debugging port is stolen?

(Essentially it is not possible to inject and execute
machine code)

But, I don't say safety.

Harvard Architecture

From RISC's standpoint, having instruction cache separated from
data cache

From microcomputers' standpoint, having the address space of
the flash ROM used to place the machine code separated from
the address space of RAM used to place data (Ex: AVR)

The principle of SOP
Even when it is not possible to inject and execute machine code, by
repeatedly doing the following it is possible to combine existing
machine code at instruction level and execute arbitrary machine
code, similarly to ROP

With G command, rewrite the program counter to the address of
the desired machine code

With s command, do the step execution

An arbitrary code execution based on a step execution by RSP
(SOP: Step-Oriented Programming)

It's dangerous.

What you can do with SOP

It is possible to combine existing machine code to
execute arbitrary code, even if it is not possible to
modify the machine code area or not possible to
execute machine code on RAM

It is possible to build arbitrary code more easily
than methods like ROP because it can set the
value of the program counter freely and execute
instructions one by one using step execution

To do the step execution
It is possible to do the step execution, even when
rewriting instructions is not possible

Even if we can't rewrite the machine code, SOP is
available without rewriting the machine code if the
step execution uses step execution exception

Some stubs have not been implemented to check
addresses when a trap instruction is embedded by a
step execution, despite having been implemented to
check addresses when the memory is rewritten by M
command

To do the step execution
It is possible to do the step execution, even when
rewriting instructions is not possible

Even when a step execution is not available, SOP is
available by setting a breakpoint to the next instruction
if the CPU has the hardware breakpoint function and
the stubs support it (Z1 command)

If the CPU has a watchpoint function, SOP is available
by rewriting registers, combining a load instruction and
a store instruction, and setting a breakpoint to an
appropriate location

Experiments at SECCON
CTF

Experiments through a question at SECCON CTF
For the online preliminary contest of SECCON2016, I experimentally
presented a question for executing arbitrary code using SOP

For the final contest of SECCON2016, I presented a question to
compete against each other to create the minimum SOP

Executable files for 4 architectures such as ARM are operating on
the simulator on the server
Debugger's connection port is available and one can connect to it
using RSP via TCP
You get a score if you could read a keyword from a file "word.txt" in
the current directory of the server and commit it to the score server
You get a score at regular intervals if you write your team's keyword
to a file "flag.txt" in the current directory of the server
(Only the team with the minimum-sized SOP can write it)

Notes

SOP is required to complete this question
Is SOP used...?

Is SOP a method that anyone can come up with...?

The following 5 RSP commands are available: s, c, g, G, and m

M command is disabled

Because there will be no place for creativity (the question will be
so easy if you can rewrite the memory; you just inject and
execute machine code)

This assumes a situation where it is not possible to inject and
execute machine code

Important!
This research is conducted with the purpose
that is to be able to consider some essential
defenses by understanding the possibilities of
attacks when the connection was taken away,
not to help any illegal attacks.

It's illegal to attack or inspect others' server or
equipment without permission. Don't do that!

Details of the presented question
Competitors get only the following
information

Port number to connect with TCP

That you can connect using RSP

That you score points by reading
a keyword from word.txt

That you score points by writing
your team's keyword to flag.txt

Example of a command to use
after the connection is established
("+$g#67+")

Key points in this question

As a result, many teams used SOP to solve the question
(SOP is a method that anyone can come up with)

You must realize a precondition that you should operate directly
from RSP, not from gdb
You must find out what the architecture of the destination you
are connecting to is
You must search for commands available in RSP and understand
which commands are available and which are not
You must realize that the M command is unavailable
You must think about how you can read from and write to files
(Can they come up with the method to execute arbitrary code
using SOP... ?)

List of architectures
Architecture

name Type Features

ARM 32-bit microcomputer 4-byte fixed-length instruction set
H8/300 16-bit microcontroller Variable-length instruction set
SH 32-bit RISC microcontroller 2-byte fixed-length instruction set
V850 32-bit RISC microcontroller 4-byte fixed-length instruction set

There won't be a competition if there are
many target servers, so we prepared only

small number of architectures

Demo
(Connection using RSP)

Demo
(Obtaining keywords using SOP)

Results
As a result, many teams used SOP to solve the question

Given a certain amount of knowledge, it can be said that SOP is a
method that anyone can come up with (It isn't a special method, and
it isn't a new method)

Use the existing code of the built-in library for floating-point arithmetic
emulation of ARM simulator attached to GDB

A variety of machine code becomes available

I didn't know the existence of such a library

The team that is able to find and use the compression protocol for RSP
will gain a huge advantage

Conclusion

When the debugging port is open, anything can be
done (of course)

You cannot say that it is safe just because it is not
possible to inject machine code
(Using SOP, it is possible to execute arbitrary code)

Let's make sure that the debugging port is closed!
(If possible, try deleting stub code and removing the
circuit itself)

Thank you
very much

